VESTITOL AND VESTICARPAN, ISOFLAVONOIDS FROM MACHAERIUM VESTITUM*

KAZU KUROSAWA†, W. DAVID OLLIS†, BRIAN T. REDMAN†, IAN O. SUTHERLAND† and OTTO R. GOTTLIEB‡

† Department of Chemistry, The University, Sheffield S3 7HF, England; ‡ Instituto de Química, Universidade de São Paulo, c.p. 20780, São Paulo, Brasil

(Received 4 October 1977)

Key Word Index—Machaerium vestitum; Leguminosae-Lotoideae; isoflavans; pterocarpans.

Abstract—The wood of *Machaerium vestitum* contains the previously described *O*-acetyloleanolic aldehyde, formononetin, (+)-medicarpin, and (-)-mucronulatol, besides (+)-vestitol [(3S)-7,2'-dihydroxy-4-methoxyisoflavan] and (+)-vesticarpan [(6aS,11aS)-3,10-dihydroxy-9-methoxypterocarpan]. The constitutions of vestitol and vesticarpan were deduced by spectra and confirmed by syntheses.

INTRODUCTION

The trunk wood of Machaerium vestitum Vog. (Leguminosae-Lotoideae) contains O-acetyloleanolic aldehyde [2], formononetin [1] and (+)-medicarpin (demethylhomopterocarpin, 1a, β -6aH, β -11aH) [3] which are all commonly encountered in Dalbergia and Machaerium species [4], as well as (-)-mucronulatol (2a, α -Ar), previously isolated from M. opacum Vog. [5], M. mucronulatum Mart. ex Benth. and M. villosum Vog. [1]. Work on the additional constituents (+)-vestitol and (+)-vesticarpan is discussed in detail in the present paper.

* Part 3 in the series 'Isoflavonoid Constituents of *Dalbergia* and *Machaerium* Species'. For Part 2 see ref. [1].

DISCUSSION AND RESULTS

(+)-Vestitol, $C_{15}H_{11}O(OH)_2OMe$, was recognized as an isoflavan derivative [6] from the lack of carbonyl absorption in its IR spectrum and the characteristic PMR signals associated with the CH_2 —CH— CH_2 unit [1, 5, 6]. The aromatic protons form two ABX systems ($J_{AX} = 7.5 \text{ Hz}$, $J_{AB} = 3 \text{ Hz}$, $J_{BX} = 0 \text{ Hz}$), showing that both aromatic rings of the isoflavan skeleton are 1,2,4-trisubstituted. The co-occurrence of vestitol with formononetin, (+)-medicarpin and (-)-mucronulatol (2a, α -Ar) suggested that vestitol might be 7,2',4'-trioxygenated, such as, possibly, 2b. This hypothesis was confirmed by the synthesis of (\pm)-vestitol.

The reaction of 2,4-dimethoxyphenylacetic acid [7] with resorcinol in the presence of BF₃-Et₂O [8] gave the deoxybenzoin 3a, which was converted by reaction

$$1a R = H$$
$$1b R = OH$$

$$R^{1}O$$
 R^{2}
 R^{3}
OMe

2a
$$R^1 = H$$
, $R^2 = OMe$, $R^3 = OH$
2b $R^1 = R^3 = H$, $R^2 = OH$
2c $R^1 = H$, $R^2 = R^3 = OH$

4a R¹ = Me, R² = H 4b R¹ = R² = H 4c R¹ = Me, R² = OMe 4d R¹ = H, R² = OH with $HC(OEt)_3$ into the isoflavone **4a**. Selective demethylation, using $AlCl_3$ in $PhNO_2$ [9], gave the corresponding 2'-hydroxyisoflavone (**4b**), which was hydrogenated, using a Pd/C catalyst in AcOH, to give (\pm)-vestitol (**2b**), identical (UV, IR, PMR) with natural (+)-vestitol. The 3S-configuration of (+)-vestitol (**2b**, α -Ar) was established by its synthesis upon hydrogenation of (+)-(6aS,11aS)-medicarpin.

(+)-Vesticarpan, C₁₅H₉O₂(OH)₂OMe, was recognized as a pterocarpan derivative from the lack of carbonyl absorption in its IR spectrum and the characteristic PMR signals associated with the CH—CH—CH, unit [10]. The aromatic protons form ABX ($J_{AX} = 8.5$ Hz, $J_{AB} = 3$ Hz, $J_{BX} = 0$ Hz) and AB ($J_{AB} = 8.5$ Hz) systems. The relative chemical shifts of these protons of vesticarpan and its diacetate favoured the constitution 1b for vesticarpan. This hypothesis was confirmed by synthesis. The reaction of 2,3,4-trimethoxyphenylacetic acid [1] with resorcinol in the presence of BF₃-Et₂O [8] gave the deoxybenzoin 3b, which was converted, using the reaction steps described above, via 4c, into the trihydroxyisoflavone 4d. This could not be reduced by NaBH₄, the method used [11] for the synthesis of other pterocarpan derivatives from 2'hydroxyisoflavones, but reduction of 4d using Na/Hg in boiling MeOH gave (\pm) -3,10-dihydroxy-9-methoxypterocarpan (1b), identical (UV, IR, PMR) with natural (+)-vesticarpan. Comparison of the ORD characteristics with those of other pterocarpan derivatives of known absolute configuration, including (+)-medicarpin (1a, β -6aH, β -11aH) [12], showed that (+)-vesticarpan has the 6aS, 11aS-configuration (1b, β -6aH, β -11aH).

EXPERIMENTAL

Unless otherwise stated spectra were measured in EtOH (UV), CHCl₃ (IR), CDCl₃ (60 MHz PMR) and MeOH (ORD). All evapns of volatile material were performed under diminished pressure.

Isolation of the constituents of M. vestitum. A specimen was collected near Santa Luzia, MG, Brasil, and identified by Apparício Pereira Duarte. Ground trunkwood (14.4 kg) was continuously extracted with hot C_6H_6 . The extract was chromatographed on Si gel (1.2 kg) to the following products (eluant, method of purif. and quantity indicated): fatty oil $(C_6H_6, 9.4 \, \text{g})$ O-acetyloleanolic aldehyde $(C_6H_6-\text{CHCl}_3, (9:1), \text{cryst. from MeOH}, 200 \, \text{mg})$, fatty material $(C_6H_6-\text{CHCl}_3, \text{giving by TLC}}$ (CHCl₃, TLC, 200 mg), mixture (CHCl₃, giving by TLC (-)-2a, 15 mg, and (+)-1b, 100 mg), formononetin (CHCl₃, cryst. from CHCl₃, 20 mg), (+)-2b, (CHCl₃, TLC, 150 mg).

Identifications. O-Acetyloleanolic aldehyde [2], formononetin [1], (+)-medicarpin (1a, β -6aH, β -11aH) [3] and (-)-mucronulatol (2b, α -Ar) [1] were identified by direct comparison with authentic samples.

(+)-Vestitol (2b, α-Ar), microcrystals, mp 156° (CHCl₃-petrol.), [α]_D²⁰ + 21.6° (c 0.45, MeOH). [Found: C, 70.90; H, 5.95 C₁₆H₁₆O₄ requires: C, 70.57; H, 5.92%]. $\lambda_{\rm max}$ (nm): 206, 228, 285 (ε 45.500, 11.300, 5700). $\nu_{\rm max}$ (cm⁻¹): 3500, 3250, 1620. PMR (τ): 3.57, 3.62 (2 dd), 3.54, 3.74 (2 d), 3.01, 3.15 (2 d) (2 ABX systems, $J_{\rm AB}$ = 3 Hz, $J_{\rm AX}$ = 8 Hz, H-6; H-5'; H-8; H-3': H-5. H-6', 5.5–7 (m, 2 H-2, H-3), 7.15 (br. d, J = 75 Hz, 2 H-4), 6.30 (s, OMe). ORD (c 0.08): $[\phi]_{370}$ + 199, $[\phi]_{333}$ + 298. $[\phi]_{313}$ + 394, $[\phi]_{303}$ 0, $[\phi]_{292}$ - 2960. $[\phi]_{286}$ 0. $[\phi]_{278}$ + 5330, $[\phi]_{274}$ + 6380.

(+)-Vesticarpan (1b. β-6aH, β-11aH). Oil. [Found: M (HRMS), 286.076. $C_{16}H_{14}O_5$ requires: M, 286.084]. λ_{max} (nm): 226, 288 (ε 11700, 3700). ν_{max} (cm $^{-1}$)· 3500, 3225, 1620. PMR [(CD₃)₂CO, τ]: 3.39 (dd), 3.62 (d), 2.67 (d) (ABX system, J_{AB}

3 Hz, $J_{\rm AX}=8.5$ Hz, H-2, H-4, H-1), 3.39 (d), 3.54 (d) (AB system, $J_{\rm AB}=8.5$ Hz, H-7, H-8), 6.21 (s, OMe), 4.4-6 7 (m, ABCX system, 2 H-6, H-6a, H-11a). ORD (c 0.006): $[\phi]_{303}-1680, [\phi]_{290}-2170, [\phi]_{286}0, [\phi]_{274}+1430, [\phi]_{263}+1600, [\theta]_{250}+4800$. Diacetate, oil. [Found: M (MS), 370 C $_{20}H_{18}O_{7}$ requires: M, 370]. $\lambda_{\rm max}$ (nm): 230, 284 (ε 10900, 4600). $\nu_{\rm max}$ (cm⁻¹): 1760, 1615. PMR (τ): 3.23 (dd), 3.28 (d), 2.46 (d) (ABX system, $J_{\rm AB}=8.5$ Hz, H-7, H-8). 6.22 (s, OMe), 7.68, 7.73 (2 s, 2 OAc), 4.4-6.7 (m, ABCX system, 2 H-6, H-6a, H-11a). ORD (c 0.0088): $[\phi]_{400}-425, [\phi]_{290}-2740, [\phi]_{286}0, [\phi]_{278}+4000, [\phi]_{263}+2740, [\phi]_{144}+5950.$ Synthesis of (+)-restrict (2b, x-Ar). Hydrogenation (room

Synthesis of (+)-testitol (2b, α -Ar). Hydrogenation (room temp., 1 atm., 8 hr) of (+)-1a (140 mg) over 10 % Pd/C (70 mg) in HOAc (5 ml), filtration, evapn of the HOAc and cryst., of the residue gave 3S-2b (80 mg), $[\alpha]_{2}^{20} + 22.1^{\circ}$ (c 0.43, MeOH). [Found: C, 70.90, H, 5.95, $C_{16}H_{16}O_4$ requires: C, 70.57; H, 5.92 %], identical (mp, mmp, IR, PMR) with the natural product.

Synthesis of (\pm) -vestitol (2b). (a) Formation of 2,4-dimethoxybenzyl 2,4-dihydroxyphenyl ketone (3a). 2,4-Dimethoxyphenylacetic acid [7] (8.5 g) resorcinol (5 g) and BF₃-Et₂O (50 ml), as in ref. [5], gave 3a (10 g), prisms, mp 154° (EtOH-H₂O (lit. [9] mp 154°). (b) Formation of 7-hydroxy-2',4'-dimethoxyisoflavone (4a). 3a (2 g) and HC(OEt)₃ (20 ml) as in ref. [5], gave 4a (1 g), needles, mp 271° (EtOH) (lit. [7] mp 267°). (c) Formation of 7,2'-dihydroxy-4'-methoxyisoflavone (4b) as in ref. [7]. (d) Formation of (\pm) -7,2'-dihydroxy-4'-methoxyisoflavone (2b). Hydrogenation (room temp., 8 hr) of 4b (250 mg) over 10 % Pd/C (100 mg) in HOAc (8 ml), filtration, evapn of the HOAc and TLC (Si gel, CHCl₃) of the residue gave 2b (117 mg), oil, identical (IR, PMR) with natural (+)-vestitol.

Synthesis of (\pm) -vesticarpan (1b). (a) Formation of 2.3,4trimethoxybenzyl 2,4-dihydroxyphenyl ketone (3b). 2,3,4-Trimethoxyphenylacetic acid (3 g), resorcinol (1.7 g), BF₃-Et₂O (20 ml) as in ref. [5], gave 3b (2.7 g), mp 181° (lit. [13] mp 179-180°). (b) Formation of 7-hydroxy-2',3',4'-trimethoxyisoflavone (4c) as in ref. [13]. (c) Formation of 7,2',3'-trihydroxy-4'methoxyisoflavone (4d). 4c (3 g) was heated (100°, 30 min) with AlCl, (5 g) in PhNO, (40 ml). 2N HCl (60 ml) was then added and the PhNO₂ removed by steam dist. Filtration of the residue gave 4d (2.48 g). [Found: M (HRMS), 300.0640. $C_{16}H_{12}O_6$ requires: M, 300.0634], characterised as 7,2',3'triacetoxy-4'-methoxyisoflavone, cubes, mp 158° (CHCl₃-petrol). [Found: C, 62.27; H, 4.47. C₂₂H₁₈O₉ requires: C, 61.97; H, 4.26%]. λ_{max} (nm): 218, 248, 305 (ϵ 31600, 33000, 8150). ν_{max} (cm $^{-1}$): 1760, 1650, 1610). PMR (τ): 2.11 (ϵ , H-2). (d) Formation of (\pm) -3,10-dihydroxy-9-methoxypterocarpan (1b). Na/Hg (4g) was added in portions to a boiling soln of 4d (100 mg) in MeOH (20 ml). The mixture was acidified, diluted with H,O and extracted with CHCl₃. Evapn of the CHCl₃ gave residue which was purified by TLC (Si gel, CHCl₃) and sublimation (120°, 10^{-3} mm) to 1b, microcrystals, mp 121°. [Found: C, 66.18, H, 5.14, $C_{16}H_{14}O_5$ requires: C, 67.13; H, 4.93 %]. identical (IR, PMR) with natural (+)-vesticarpan.

Synthesis of (\pm) -dihydrovesticarpan (7,2',3'-trihydroxy-4'-methoxyisoflavan (2c). Hydrogenation (room temp., 1 atm., 16 hr) of 4d (118 mg) over 10 % Pd/C (100 mg) in HOAc (10 ml), filtration, evapn, and purification of the residue by TLC and sublimation (120°, 10^{-3} mm) gave 2c (25 mg), microcrystals, mp 151°. [Found: C, 66.26; H, 5.93. $C_{16}H_{16}O_5$ requires: C, 66.66; H, 5.59%]. $\lambda_{\rm max}$ (nm): 220, 285 (ϵ 20600, 3350). $\nu_{\rm max}$ (cm⁻¹): 3500, 1620. Similar hydrogenation of 1b also gave 2c.

REFERENCES

- Kurosawa, K., Ollis, W. D., Sutherland, I. O., Gottlieb, O. R. and Oliveira, A. B. de (1978) Phytochemistry 17, 1405.
- Alves, H. M., Arndt, V. H., Ollis, W. D., Eyton, W. B., Gottlieb, O. R. and Magalhães, M. T. (1966) *Phytochemistry* 5, 1327
- 3. Matos, F. J. de A., Gottlieb, O. R. and Andrade, C. H. S. (1975) Phytochemistry 14, 825.

- 4. Oliveira, A. B. de, Gottlieb, O. R., Ollis, W. D. and Rizzini, C. T. (1971) Phytochemistry 10, 1863.
- 5. Ollis, W. D., Sutherland, I. O., Alves, H. M. and Gottlieb, O. R. (1978) Phytochemistry 17, 1401.
- 6. Kurosawa, K., Ollis W. D., Redman, B. T., Sutherland, I. O., Oliveira, A. B. de, Gottlieb, O. R. and Alves, H. M. (1968) Chem. Commun. 1263.
- 7. King, F. E. and Neill, K. G. (1952) J. Chem. Soc. 4752.
- 8. Karmarkar, S. S., Shah, K. H. and Venkataraman, K. (1955) Proc. Indian Acad. Sci. 41A, 192.
- 9. Cocker, W., McMurray, T. B. H. and Staniland, P. A. (1965) J. Chem. Soc. 1034.
- 10. Pachler, K. G. R. and Underwood, W. G. E. (1967) Tetrahedron 23, 1817.
- 11. Kukla, A. S., Kalra, V. K. and Seshadri, T. R. (1967) Ind. J.
- Chem. 5, 607.

 12. Cook, J. T., Ollis, W. D., Sutherland, I. O. and Gottlieb, O. R. (1978) Phytochemistry 17, 1419.
- 13. Fului, K., Nakayama, N. and Eto, N. (1963) Nippon Kagaku Zasshi 84, 752.